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Abstract

This paper discusses and contrasts the steady and unsteady two-dimensional problem of laminar free convection from an inclined
elliptic cylinder for small Grashof numbers. The governing Navier–Stokes and heat equations are formulated in terms of the streamfunc-
tion and vorticity. The results demonstrate that the steady and limiting unsteady flows are in good agreement near the cylinder surface
while interesting departures occur in the far-field. Both numerical and analytical results are presented.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Natural, or free, convection from a horizontal two-
dimensional body is a fundamental thermal-fluid problem.
It has received numerous numerical, experimental and the-
oretical studies over the years. This paper deals with the
steady and unsteady problem of laminar, two-dimensional
flow caused by free convection from an isothermal inclined
elliptic cylinder in a fluid which is initially at rest. The main
assumptions made in this study are that the flow remains
laminar and two-dimensional for all time, t > 0. Simplifica-
tions made include the Boussinesq approximation and the
neglect of viscous dissipation. For the small Grashof num-
ber range considered here, these simplifications are quite
reasonable.

This problem is of interest for both theoretical and prac-
tical reasons since it has important applications in engi-
neering such as flow past heated tubes or wires, hot wire
anemometry, thermal pollution, dispersion of pollutants,
and even in the design of heat exchangers. The related
problems of the heated flat plate and the heated circular
cylinder are well studied and some of these works include
[1–15].
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Relatively little work has been done for the more general
geometry of an elliptic cylinder which is considered here.
The main motivation for pursuing the elliptic geometry lies
in the enhancement in the rate of heat transfer associated
with this. It is thus important to quantify this enhance-
ment. An added advantage offered is that the elliptic geom-
etry is flexible enough to tackle all elliptic cross sections
ranging from the limiting case of a circular cylinder to that
of a flat plate. Some existing research includes the studies
of Badr and Shamsher [16] and Mahfouz and Kocabiyik
[17] who address the symmetrical unsteady case and the
study of Badr [18] which considers asymmetrical flows.
Some important experimental investigations were carried
out by Huang and Mayinger [19] for elliptic tubes at vari-
ous inclinations and aspect ratios and more recently by
Elsayed et al. [20] for the case of a constant heat flux from
an elliptic tube at large Grashof numbers.

The present work differs from previous studies in a few
respects. First, we are interested in both the steady and
unsteady cases and have carried out a detailed investigation
into the similarities and differences between these problems
for the small Grashof number regime. Specifically, we
investigate whether the unsteady problem converges to
the steady-state problem for large times. Further, this work
offers analytical results for both the steady and unsteady
problems. For the steady-state case an asymptotic solution
valid at large distances is derived and used to furnish
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Nomenclature

a1; a2 arbitrary constants in asymptotic solution
b, a cylinder semi-minor, semi-major axes, respec-

tively
c0; c1; c2; c3; c4 finite differencing constants
A;B;A0;B0;A1;B1 functions appearing in governing

equations
c semi-focal length, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
g gravitational acceleration
Gr Grashof number, Gr ¼ agc3ðT 0 � T1Þ=m2

h, k uniform grid spacing in n; h directions, respec-
tively

H computational parameter, H ¼ h=k
K number of terms retained in Fourier series
M metric of transformation
M0 metric evaluated on the cylinder surface
Nu local Nusselt number
N � L computational grid
Nu average Nusselt number
Pr Prandtl number, Pr ¼ m=j
q, Q functions representing right-hand-sides
r ellipse aspect ratio, r ¼ b=a
rn; sn Fourier coefficients for the vorticity
S1; S2; S3 source terms
t time
T dimensional temperature
vn; vh velocity components
x, y Cartesian coordinates
z boundary-layer coordinate
z1 outer boundary

Greek symbols

a thermal expansion coefficient
b computational parameter
Dt time increment in numerical scheme
e tolerance
j thermal diffusivity
m kinematic viscosity
n; h elliptic coordinates
n0 constant related to r, tanh n0 ¼ r
n1 outer boundary
g angle of inclination
k boundary-layer parameter, k ¼

ffiffiffiffi
4t
p

/ dimensionless temperature, / ¼ ðT � T1Þ=ðT 0�
T1Þ

U scaled dimensionless temperature, Uðn; hÞ ¼
/ðn; hÞ � e�4n

w streamfunction
f vorticity
v generic flow variable

Subscripts

0 surface value or leading-order terms
1 value at infinity

Superscript

� dimensional quantity
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far-field boundary conditions for the steady numerical
solution procedure. Previous asymptotic solutions, some
of which include the works [21–25], revolve around the sim-
plified boundary-layer equations which are appropriate
near the cylinder and for large Grashof numbers. These
solutions are not expected to be valid in the buoyant plume
region, especially for small Grashof numbers. The asymp-
totic solution presented in our research is not based on
the boundary-layer equations and thus applies in the far-
field. For the unsteady case an approximate analytical solu-
tion valid for small times is constructed and used to pro-
vide an initial condition for the unsteady numerical
solution procedure.

The paper is organized as follows. In the following sec-
tion we present the governing equations which are formu-
lated in terms of the streamfunction and vorticity and
introduce a coordinate system which is convenient for the
elliptic geometry. Then, in Section 3 we discuss numerical
techniques used to solve the steady and unsteady problems.
In describing the numerical schemes, the difficulties associ-
ated with solving the steady and unsteady equations will be
pointed out and ways of overcoming these inherent difficul-
ties will be proposed. Following this, in Section 4, we
present and discuss the numerical results obtained. A brief
summary outlining the key points is included in the con-
cluding section. Lastly, Appendices A and B outline the
asymptotic and small time analyses, respectively.
2. Governing equations

The equations governing the motion of a viscous incom-
pressible fluid are the Navier–Stokes and energy equations.
The fluid is characterized by the following properties: m the
kinematic viscosity, j the thermal diffusivity, a the thermal
expansion coefficient, and k the thermal conductivity.
While these fluid properties are assumed to be constant,
the fluid density, q, is allowed to vary with temperature,
T, in the usual fashion

qðT Þ ¼ q0½1� aðT � T1Þ�;

where q0 refers to a reference density and T1 the constant
far-field temperature. To render the equations in dimen-
sionless form the chosen length scale is the semi-focal

length of the ellipse, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

(where a; b denote the
semi-major and semi-minor axis lengths, respectively), the
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time scale is c2=m and the temperature scale is T 0 � T1
where T 0 is the constant surface temperature.

Since the flow is assumed to remain two-dimensional it
is beneficial to work in terms of a streamfunction and vor-
ticity. Also, because of the geometry of the problem it is
worthwhile to work with the modified polar coordinates
ðn; hÞ which are related to the Cartesian coordinates ðx; yÞ
through the conformal transformation

xþ iy ¼ cosh½ðnþ n0Þ þ ih�:

The advantage of this is that the contour of the cylinder is
transformed to n ¼ 0 while the infinite region exterior to
the cylinder is mapped to the semi-infinite rectangular strip
0 < n <1, �p 6 h 6 p. The constant n0 is defined by

tanh n0 ¼ r;

where r ¼ b=a is the ellipse aspect ratio. The above map-
ping holds for all elliptic cylinders having 0 < r < 1 with
r ¼ 0 denoting a flat plate and r ¼ 1 a circular cylinder.
Another important feature associated with this transforma-
tion is that length scales close to the cylinder remain un-
changed while those far away get contracted. This is
helpful from a numerical point of view since the flow field
is compressed.

The flow configuration is illustrated in Fig. 1. We now
proceed to write the steady and unsteady equations of
motion.

2.1. Steady-state problem

In terms of the coordinates ðn; hÞ the dimensionless
steady-state Navier–Stokes and energy equations for a vis-
cous, incompressible fluid in terms of the streamfunction,
w, vorticity, f, and temperature, /, then become

o2w
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þ o2w

oh2
¼ M2f; ð1Þ

o2f
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þ o2f
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¼ ow
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Fig. 1. The flow configuration.
where

M2 ¼ 1

2
½coshð2ðnþ n0ÞÞ � cosð2hÞ�;

A ¼ sinhðnþ n0Þ cosðgÞ cosðhÞ � coshðnþ n0Þ sinðgÞ sinðhÞ;
B ¼ coshðnþ n0Þ cosðgÞ sinðhÞ þ sinhðnþ n0Þ sinðgÞ cosðhÞ:

The velocity components ðvn; vhÞ in the directions of
increase of ðn; hÞ are related to the streamfunction through

vn ¼ �
1

M
ow
oh
; vh ¼

1

M
ow
on
;

while the vorticity is found through the expression

f ¼ 1

M2

o

on
ðMvhÞ �

o

oh
ðMvnÞ

� �
:

The problem as posed is completely specified by the fol-
lowing dimensionless parameters: the Grashof number,
Gr ¼ agc3ðT 0 � T1Þ=m2, the inclination, g, the Prandtl
number, Pr ¼ m=j, and the ellipse parameter, r. The dimen-
sionless temperature, /, is related to the dimensional
temperature, T, through / ¼ ðT � T1Þ=ðT 0 � T1Þ. Simi-
larly, w ¼ ~w=m and f ¼ c2~f=m with the tilde denoting a
dimensional quantity. Lastly, in arriving at the above equa-
tions we have made the Boussinesq approximation to
describe the buoyancy force and have omitted viscous
dissipation.

Eqs. (1)–(3) are to be solved subject to the no-slip and
isothermal boundary conditions on the surface given by

w ¼ ow
on
¼ 0 and / ¼ 1 on n ¼ 0:

Inspecting these conditions we observe that two conditions
for the streamfunction are given while none are provided
for the vorticity. Later we will discuss a method to pre-
scribe the surface vorticity. The vorticity field can be shown
[26] to satisfy integral constraints. These can be derived
from the boundary conditions using Green’s second iden-
tity and are given byZ 1

0

Z p

�p
e�nnM2f sinðnhÞdhdn ¼ 0; n ¼ 1; 2; . . . ;Z 1

0

Z p

�p
e�nnM2f cosðnhÞdhdn ¼ 0; n ¼ 0; 1; . . .

While the far-field conditions are simply

w; f;/! 0 as n!1;
we have carried out an asymptotic analysis, presented in
Appendix A, and have derived more appropriate far-field
gradient conditions given by

ow
on
! �w;

of
on
! �3f;

o/
on
! �4/ as n!1:

These conditions have the effect of bringing infinity closer
and enables a smaller computational grid to be used.
Lastly, periodicity is enforced in all the flow variables.
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2.2. Unsteady problem

For the unsteady problem we assume that at t ¼ 0 the
temperature of the cylinder surface is set to T 0 while the
surrounding fluid temperature is T1 with T 0 > T1. Impul-
sively generated convection will then form as a result of the
discontinuity in temperature. The unsteady problem is gov-
erned by the streamfunction equation (1) together with the
following dimensionless vorticity and heat transport
equations:

of
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2f

on2
þ o

2f

oh2
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þGr A
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; ð4Þ
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oh
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þ 1

Pr
o2/

on2
þ o2/

oh2
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: ð5Þ

Boundary conditions valid for all t P 0 for the unsteady
problem include the no-slip and isothermal surface condi-
tions, and the periodicity and integral conditions presented
earlier, along with

w; f;/! 0 as n!1;
which correspond to a quiescent ambient far-field flow. We
note that these conditions are appropriate for solving the
time-dependent problem because in this case heat and
momentum require some time to diffuse away from the cyl-
inder surface and we can always place the outer boundary
sufficiently far away to guarantee this. In the steady-state,
or time-independent, case this is not possible. Lastly, we
need to specify initial conditions. Since the fluid motion
starts from rest, the initial conditions for w and f are simply

wðn; h; t ¼ 0Þ ¼ fðn; h; t ¼ 0Þ ¼ 0:

The initial temperature distribution, on the other hand, will
be given by

/ðn; h; t ¼ 0Þ ¼
1 on n ¼ 0

0 for n 6¼ 0

�
:

As previously mentioned, the discontinuity in the initial
temperature field gives rise to an infinite heat flux bleeding
off the cylinder surface at t ¼ 0. To partially account for
this inherent singularity we make the following bound-
ary-layer type transformation:

n ¼ kz; k ¼
ffiffiffiffi
4t
p

: ð6Þ
The similarity variable z is actually suggested by the
approximate solution derived in Appendix B for small
times t. Essentially, this change of variable stretches the ini-
tial thin thermal-boundary layer. A similar transformation
has been successfully used in the recent investigation by
D’Alessio et al. [27] involving mixed and forced convection.
The analysis presented in Appendix B demonstrates that
this approach can also be applied to free convection
problems.

In terms of the coordinate z Eqs. (1), (4), and (5) now
become
o2w
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and will be used to dictate the early stages of the flow. Once
the boundary layer thickens appreciably it is unrealistic to
continue working in terms of the boundary-layer coordi-
nate z. We then switch back to the original coordinate n
and solve Eqs. (1), (4), and (5). To avoid the temperature
discontinuity at t ¼ 0 an approximate solution was used
as an initial condition at a small time beyond t ¼ 0. The
approximate solution, derived in Appendix B, is valid for
small times and is implemented at a time when it is judged
to be valid. As a final note we emphasize that although the
boundary-layer coordinate z is utilized, the fully nonlinear
Navier–Stokes and energy equations are to be solved and
not the simplified boundary-layer equations.

3. Numerical methods

We begin by discretizing the computational domain
bounded by 0 6 n 6 n1 and �p 6 h 6 p into a uniform
network of N � L grid points located at

ni ¼ ih; i ¼ 0; 1; . . . ;N ;

hj ¼ �pþ jk; j ¼ 0; 1; . . . ; L

with

h ¼ n1
N
;

k ¼ 2p
L
;

where n1 denotes the outer boundary approximating
infinity.

3.1. Steady-state calculations

The steady-state equations (1)–(3) are solved by finite
differences. Defining vi;j � vðni; hjÞ where v denotes a gen-
eric flow variable, we can obtain discretized versions of
Eqs. (1)–(3). Using central differencing the discretized ver-
sion of the streamfunction equation (1) becomes

2ð1þ H 2Þwi;j ¼ wiþ1;j þ wi�1;j þ H 2ðwi;jþ1 þ wi;j�1Þ
� h2M2

i;jfi;j;

where H ¼ h=k. Prompted by the asymptotic analysis in
Appendix A and the boundary conditions satisfied by /,
we set / ¼ e�4n þ U. Then Eqs. (2) and (3) transform to
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and U satisfies simpler boundary conditions given by

U ¼ 0 on n ¼ 0;
oU
on
! �4U as n!1: ð12Þ

Since Eqs. (10) and (11) are similar in form we rewrite them
in the generic form

o
2v

on2
þ o

2v

oh2
¼ a4

ow
on

ov
oh
� ow

oh
ov
on

� �
þ S1:

To solve the above we apply a generalized second-order
discretization scheme given by

c0vi;j ¼ c1viþ1;j þ c2vi�1;j þ c3vi;jþ1 þ c4vi;j�1 � h2S1;

where

c0 ¼ 2þ 2H 2 þ 2b
a4H

4

� �2

½ðDwhÞ
2 þ ðDwnÞ

2�;

c1 ¼ 1þ a4H
4

Dwh þ b
a4H

4

� �2

ðDwhÞ
2
;

c2 ¼ 1� a4H
4

Dwh þ b
a4H

4
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ðDwhÞ
2
;

c3 ¼ H 2 � a4H
4

Dwn þ b
a4H

4

� �2

ðDwnÞ
2
;

c4 ¼ H 2 þ a4H
4

Dwn þ b
a4H

4

� �2

ðDwnÞ
2
;

with

Dwn ¼ wiþ1;j � wi�1;j; Dwh ¼ wi;jþ1 � wi;j�1:

In the above scheme b is a computational parameter yet to
be defined. Clearly, when b ¼ 0 the scheme reduces to the
usual central-difference representation. Further, if
b P 1=4 then the associated matrix is diagonally dominant
and therefore an iterative method of solution should con-
verge. It is interesting to point out that with the choice of
b ¼ 1=3 all the terms present in the above appear as part
of the compact h4-accurate schemes of Dennis and Hudson
[28].

As previously mentioned there is no condition for the
surface vorticity. To circumvent this problem a second-
order expression for the surface vorticity can be derived
by taking a Taylor expansion of w about the cylinder sur-
face and making use of the extra condition available for the
streamfunction. This leads to the following formula for
computing the surface vorticity, fo;j:

ð3M2
o;j þ 2h sinh 2noÞfo;j ¼

12w1;j

h2
�M2

o;jð4f1;j � f2;jÞ þOðh2Þ:
A computationally efficient way to enforce the far-field gra-
dient conditions is through

wN ;j ¼ e�hwN�1;j;

fN ;j ¼ e�3hfN�1;j;

UN ;j ¼ e�4hUN�1;j:

An iteration of the procedure involves sweeping through
all the grid points using the above formulae to obtain a new
approximation to w and v and is repeated until the maxi-
mum value of the absolute difference between successive
iterates falls below a specified tolerance e.

3.2. Unsteady calculations

As previously mentioned the early stages of the flow are
to be computed using Eqs. (7)–(9) involving the boundary-
layer coordinate z. We point out that the physical coordi-
nate n ¼ kz is a moving coordinate and hence the outer
boundary n1 ¼ kz1 is constantly being pushed further
away from the cylinder surface at a rate which reflects
the initial growth of the thermal-boundary layer. For this
reason we are justified in saying that no heat or vorticity
will reach the outer boundary n1. Once the boundary layer
thickens we change back to the coordinate n and solve (1),
(4), (5). A convenient time to make the switch is at t ¼ 0:25
since at this time k ¼ 1 and hence n ¼ z.

The streamfunction equations (1) and (7) are solved by
using standard central differencing as discussed in the pre-
vious section. To discuss the numerical method used to
solve Eqs. (8) and (9) we begin by rewriting them in the
generic form

t
ov
ot
¼ qðz; h; tÞ;

where

qðz; h; tÞ ¼ a5

4M2
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The scheme used to discretize this equation is very similar
to the Crank–Nicholson implicit procedure. Assuming the
solution at time t is known, we advance the solution to time
t þ Dt by integrating the above. Integration by parts yields

vsjtþDt
t �

Z tþDt

t
vds ¼

Z tþDt

t
qds;

where Dt is the time increment. Approximating the inte-
grals using the trapezoidal rule results in the expression

vðz; h; t þ DtÞ ¼ vðz; h; tÞ þ Dt
2t þ Dt

� �
½qðz; h; t þ DtÞ

þ qðz; h; tÞ�:

Since qðz; h; t þ DtÞ depends on vðz; h; t þ DtÞ and its spacial
derivatives the scheme is implicit. This equation is solved



Table 1
Comparison of Nu with different grids and outer boundary locations n1
for the case with Pr ¼ 0:7, Gr ¼ 1, g ¼ 45� and r ¼ 0:5 using the gradient
far-field condition

n1 Grid size Nu

3 81� 81 1.443
4 81� 81 1.525
5 81� 81 1.604
3 121� 121 1.391
4 121� 121 1.452
5 121� 121 1.484

1384 S.J.D. D’Alessio et al. / International Journal of Heat and Mass Transfer 51 (2008) 1379–1392
iteratively using a Gauss–Seidel procedure with the spatial
derivatives appearing in the function q being approximated
by central-differences.

The boundary conditions used in solving the heat trans-
port equation are straight-forward and require no explana-
tion. For the vorticity transport equation, on the other
hand, careful attention must be given in determining the
surface vorticity. We begin by introducing the functions
rnðz; tÞ and snðz; tÞ defined by

rnðz; tÞ ¼
1

p

Z p

�p
M2f sinðnhÞdh; n ¼ 1; 2; . . . ;

snðz; tÞ ¼
1

p

Z p

�p
M2f cosðnhÞdh; n ¼ 0; 1; . . .

Referring back to the integral conditions, it is easy to see
that these functions will satisfy the integral constraints gi-
ven byZ 1

0

e�nkzrnðz; tÞdz ¼ 0; n ¼ 1; 2; . . . ;Z 1

0

e�nkzsnðz; tÞdz ¼ 0; n ¼ 0; 1; . . .

The surface vorticity can be determined by inverting the
expressions for rn and sn and leads to the truncated Fourier
series

fð0; h; tÞ ¼ 1

M2
0

1

2
s0ð0; tÞ þ

XK

n¼1

½rnð0; tÞ sinðnhÞ
(

þsnð0; tÞ cosðnhÞ�
)
:

The quantities snð0; tÞ and rnð0; tÞ are computed by enforc-
ing the integral conditions; that is, off the cylinder surface
rn and sn can be computed using the most recent guess
for f. Then, snð0; tÞ and rnð0; tÞ are computed by numeri-
cally satisfying the integral constraints.

As previously mentioned, the temperature discontinuity
at t ¼ 0 is avoided by using an approximate solution, out-
lined in Appendix B, as an initial condition at a small time
beyond t ¼ 0. For t > 0:25 Eqs. (1), (4), and (5) are then
solved. The numerical method used on Eqs. (4) and (5) is
similar to that already described. The only difference worth
pointing out is that for t > 0:25 these equations can be
rewritten in the generic form

ov
ot
¼ Qðn; h; tÞ;

where

Qðn; h; tÞ ¼ 1

M2

ow
oh

ov
on
� ow

on
ov
oh
þ a5

o2v

on2
þ o2v

oh2

� �
þ S3

� �
:

Using the same approach as previously outlined we arrive
at the following scheme for solving the above transport
equation:
vðn; h; t þ DtÞ ¼ vðn; h; tÞ þ Dt
2
½Qðn; h; t þ DtÞ þ Qðn; h; tÞ�:
4. Numerical results and discussion

Here we present numerical results obtained by the meth-
ods discussed in the previous section. The problem of free
convection from an inclined elliptic cylinder is completely
characterized by the parameters Gr; Pr; g and r. Detailed
numerical solutions have been obtained for small Grashof
numbers in the range 1 6 Gr 6 20 for inclinations 0�, 45�,
90�. Solutions were obtained for ellipses having r ¼
0:2; 0:5; 0:8 and for Pr ¼ 0:7; 1; 5; 10.

4.1. Steady-state results

In obtaining steady-state solutions the symmetric prob-
lem corresponding to g ¼ 0� for a given Gr; Pr and r was
first solved. This was then used as an initial guess for the
asymmetric case with g ¼ 45�. This was done in order to
accelerate the convergence of the numerical procedure.
As is usual with these types of problems, mild under-relax-
ation had to be applied in computing the surface vorticity.

In all our computations the parameter b was set to
b ¼ 1=2. With b ¼ 0 (i.e., central differencing) convergence
problems were encountered. The optimal values of the
outer boundary location n1 and grid size N � L were deter-
mined by carrying out numerous numerical experiments.
Two grid sizes (81� 81 and 121� 121) along with three
choices of n1 (3, 4 and 5) were used. The values n1 ¼
3; 4; 5 correspond to locations of about 20, 50, 130 semi-
major axis lengths, respectively. Listed in Table 1 are the
resulting average Nusselt numbers ðNuÞ, defined as

Nu ¼ 1

2p

Z p

�p
Nudh where Nu ¼ �2

1

M
o/
on

� �
0

;

for the various n1 and N � L values. The observed trend is
that as n1 increases for a fixed grid size, Nu also increases.
On the other hand, for a fixed n1, Nu decreases as the grid
size increases. Since little change in Nu occurs when going
from n1 ¼ 4 to n1 ¼ 5 for the grid size N � L ¼ 121�
121, these choices were adopted for all steady-state calcula-
tions and were found to be adequate for the Grashof and



0 45 90 135 180 225 270 315 360
−25

−20

−15

−10

−5

0

5

10

15

20

25

θ

ζ o

Gr=1
Gr=10
Gr=20

Fig. 3. Steady surface vorticity distributions for various Grashof numbers
with Pr ¼ 1; r ¼ 0:5; g ¼ 45�.
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Table 2
Average Nusselt numbers for various Grashof numbers and inclinations
with Pr ¼ 1 and r ¼ 0:5
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Prandtl numbers considered. Convergence was defined
when two successive iterates of the temperature, vorticity,
streamfunction and Nusselt number differed by a tolerance
of �. Typically, � � 10�6 was used.

In all isotherm plots to be presented, contours of
/ ¼ 0:1; . . . ; 1 in increments of D/ ¼ 0:1 are plotted. The
outermost contour corresponds to / ¼ 0:1 while the inner-
most contour corresponds to / ¼ 1 which coincides with
the cylinder surface. We observed a visible improvement
in using the gradient far-field condition over the zero far-
field condition. While the isotherms near the cylinder sur-
face were found to be in close agreement, further away
noticeable differences appeared: the solution using the zero
far-field conditions exhibited mushrooming isotherms as a
result of compressing the flow field whereas the gradient
far-field conditions produced plume-like isotherms which
are physically more realistic. This difference was most
noticeable when n1 ¼ 3. In addition, differences in the
computed Nu resulted. For example, with Pr ¼ 0:7,
Gr ¼ 1, g ¼ 45�, r ¼ 0:5 (using n1 ¼ 5 and N � L ¼ 121�
121) we obtained

Nu ¼ 1:484 using the gradient far-field condition; while

Nu ¼ 1:555 using the zero far-field condition:

Thus, unless otherwise specified, the gradient condition was
used in obtaining all subsequent results. A streamline plot
is shown in Fig. 2 corresponding to the case Gr ¼ 1, Pr ¼ 1,
r ¼ 0:5, g ¼ 45�; clearly visible in this diagram is the rising
fluid motion above the cylinder and the recirculating flow
on either side further aloft.

Figs. 3 and 4 illustrate the surface vorticity and Nusselt
number distributions, respectively, for Gr ¼ 1; 10; 20. Both
plots reveal pronounced variations occurring near the tips
of the cylinder as Gr is increased. Listed in Tables 2–4
are steady-state results for various parameter values. The
dependence of Nu on the parameters is apparent. For a
fixed r and g, Nu increases as either Gr or Pr increases,
while Nu decreases as r is increased for a fixed Gr, Pr and
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Fig. 2. Steady streamline plot for the case Gr ¼ 1; Pr ¼ 1; r ¼ 0:5; g ¼ 45�.

g Nu

Gr = 1 Gr = 10 Gr = 20

0� 1.579 2.226 2.489
45� 1.603 2.272 2.545
90� 1.625 2.330 2.600

Table 3
Average Nusselt numbers for various Grashof numbers and aspect ratios
with Pr ¼ 1 and g ¼ 45�

r Nu

Gr = 1 Gr = 10 Gr = 20

0.2 2.180 3.019 3.351
0.5 1.603 2.272 2.545
0.8 1.158 1.699 1.923
g. This re-inforces the finding cited in [29,30], namely that
the heat transfer rate is enhanced as the ellipse gets thinner



Table 4
Average Nusselt numbers for various Grashof numbers and Prandtl
numbers with r ¼ 0:5 and g ¼ 45�

Pr Nu

Gr = 1 Gr = 10 Gr = 20

0.7 1.484 2.103 2.343
1 1.603 2.272 2.545
5 2.223 3.331 3.743

10 2.580 3.892 4.481
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Fig. 6b. Steady isotherm plot for the case Gr ¼ 20; Pr ¼ 1; r ¼ 0:5;
g ¼ 45�.
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and points to an important application for using elliptic
tubes over circular tubes. Lastly, Nu increases slowly as g
increases from 0� to 90�. Additional isotherm plots are dis-
played in Figs. 5 and 6 with Fig. 5 illustrating a symmetri-
cal case having g ¼ 0. Figs. 6a–6d, on the other hand,
illustrate the changes in the isotherm plots as a result of
varying Gr, Pr and r. To bring out these differences each
diagram uses the same plotting parameters. The effect of
increasing Gr is clearing seen by comparing Figs. 6a and
6b. As Gr is increased the thermal plume becomes nar-
rower. The effect of increasing Pr is seen by comparing
Figs. 6a and 6c and also results in a narrower plume, as
expected. Lastly, the effect of varying the ellipse aspect
ratio r is portrayed in Figs. 6b and 6d. It is interesting to
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Fig. 5. Steady isotherm plot for the case Gr ¼ 1; Pr ¼ 1; r ¼ 0:5; g ¼ 0�.
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Fig. 6a. Steady isotherm plot for the case Gr ¼ 1; Pr ¼ 1; r ¼ 0:5; g ¼ 45�.
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Fig. 6c. Steady isotherm plot for the case Gr ¼ 1; Pr ¼ 10; r ¼ 0:5; g ¼
45�.
observe that the thinner cylinder causes an enhanced rota-
tion of the plume with the vertical.
4.2. Unsteady results

In solving the unsteady problem, Eqs. (7)–(9) were inte-
grated in the boundary-layer coordinate z up to a time
t ¼ 0:25 and then Eqs. (1), (4), and (5) were solved in the
physical coordinate n. The approximate solution presented
in Appendix B was used as an initial condition at t ¼ 0:01.
Suitable computational parameters for solving (7)–(9) were
found to be z1 ¼ 5, N � L ¼ 101� 121 and the number of
terms retained in the Fourier series for computing the sur-
face vorticity was K ¼ 25. Initially, small time steps of
Dt ¼ 10�3 were taken for the first 10 advances. Following
that, time steps of Dt ¼ 10�2 were used up to t ¼ 0:25. In
the physical coordinate integration was continued with
Dt ¼ 0:05. With the passage of time the flow occupied more
space, and thus, the outer boundary n1 had to be placed
further away from the cylinder. This meant expanding
the grid in order to capture the entire flow. For example,
with Gr ¼ 1; n1 ¼ 5 was sufficient up until t � 5. The grid



Table 5
Comparison of steady-state values of Nu with unsteady limits for
Gr ¼ 1; 10 for the case with Pr ¼ 1, g ¼ 45� and r ¼ 0:5

Gr Steady-state Nu Unsteady limit Nu

1 1.603 1.518
10 2.272 2.164
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Fig. 6d. Steady isotherm plot for the case Gr ¼ 20; Pr ¼ 1; r ¼ 0:2; g ¼
45�.
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was then expanded to N � L ¼ 201� 121 (i.e., n1 ¼ 10)
which was satisfactory for times up to t � 30. Clearly, the
longer the computations were carried out the further away
n1 had to be placed. The convergence criterion employed
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Fig. 7. Comparison of steady-state Nu distribution with unsteady limit for
the case Gr ¼ 1; Pr ¼ 1; r ¼ 0:5; g ¼ 45�.
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Fig. 8. Time variation of Nu for Gr ¼ 1; 10 with Pr ¼ 1; r ¼ 0:5; g ¼ 45�.
for solving the unsteady problem was similar to that
applied to the steady-state problem. As in the steady-state
case, under-relaxation was applied to the surface vorticity.
For this choice of computational parameters no conver-
gence problems were encountered.

The main objective for performing the unsteady calcula-
tions was to investigate whether the long-time unsteady
results converged to the corresponding steady results.
Fig. 7 compares the steady and limiting ðt ¼ 30Þ unsteady
Nusselt number distributions and reveals good agreement
between the two. Fig. 8 illustrates the time variation of
the average Nusselt number ðNuÞ for Gr ¼ 1; 10 while
Table 5 compares numerical values. The time variations
of Nu display convergence in Nu to a constant value. Note
that at t ¼ 0 the average Nusselt number is infinite due to
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Fig. 9a. Unsteady isotherm plot at t = 0.25 for the case
Gr ¼ 1; Pr ¼ 1; r ¼ 0:5; g ¼ 45�.
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Fig. 9b. Unsteady isotherm plot at t = 10 for the case Gr ¼ 1;
Pr ¼ 1; r ¼ 0:5; g ¼ 45�.
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Fig. 9c. Unsteady isotherm plot at t = 20 for the case Gr ¼ 1; Pr ¼ 1;
r ¼ 0:5; g ¼ 45�.
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Fig. 9d. Unsteady isotherm plot at t = 29.5 for the case Gr ¼ 1; Pr ¼ 1;
r ¼ 0:5; g ¼ 45�.
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Fig. 10b. Unsteady isotherm plot at t = 7 for the case Gr ¼ 10; Pr ¼ 1;
r ¼ 0:5; g ¼ 45�.
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Fig. 10c. Unsteady isotherm plot at t = 8 for the case Gr ¼ 10; Pr ¼ 1;
r ¼ 0:5; g ¼ 45�.
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the temperature discontinuity on the cylinder surface and
decays rapidly for 0 < t < 1. Figs. 7 and 8 together with
Table 5 suggest that near the cylinder surface the limiting
unsteady solution approaches the steady-state solution, at
least for the small Gr range.
−10 −5 0 5 10
−5

0

5

10

15

Fig. 10a. Unsteady isotherm plot at t = 6 for the case Gr ¼ 10; Pr ¼ 1;
r ¼ 0:5; g ¼ 45�.
The situation further away from the cylinder is interest-
ingly different though. Portrayed in Figs. 9a–9d are iso-
therm plots at various times for the case Gr ¼ 1; Pr ¼ 1;
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Fig. 10d. Unsteady isotherm plot at t = 9 for the case Gr ¼ 10; Pr ¼ 1;
r ¼ 0:5; g ¼ 45�.
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Fig. 10e. Unsteady isotherm plot at t = 10 for the case Gr ¼ 10; Pr ¼ 1;
r ¼ 0:5; g ¼ 45�.
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r ¼ 0:5 and g ¼ 45�. For small times, as seen in Fig. 9a, the
isotherms appear to form concentric rings. This is to be
expected since for small times the dominant heat transfer
mechanism is conduction. As time evolves, depicted in
Figs. 9b–9d, a well developed thermal plume forms. At
t ¼ 29:5 shown in Fig. 9d we notice the formation of a bub-
ble which is clearly not consistent with the corresponding
steady-state case shown in Fig. 6a. This inconsistency is
even more evident when the Grashof number is increased
to Gr ¼ 10 as illustrated in Figs. 10a–10e. Thus, the
unsteady far-field flow does not appear to approach a
steady pattern. Instead, bubbles erupt periodically, proba-
bly as a result of an instability, and are swept to infinity.

5. Conclusions

Discussed and contrasted in this paper are two aspects
related to free convection from an inclined elliptic cylinder.
These include the steady-state (or time-independent) case
and the unsteady (or time-dependent) case. The underlying
assumptions made in this study include two-dimensionality
of the flow, the validity of the Boussinesq approximation,
the neglect of viscous dissipation, and that the flow remains
laminar. This problem was investigated for the small Gras-
hof number regime both numerically and analytically. The
steady calculations support the finding that the rate of heat
transfer is increased as the ellipse gets thinner.

While there was good agreement between the computed
steady and limiting unsteady surface vorticity and Nusselt
number distributions, noticeable differences were observed
in the far-field isotherm plots. The unsteady problem
reveals that the flow at large distances does not approach
the static situation demonstrated by the steady-state prob-
lem. Instead, the outer isotherms form kinks which ulti-
mately detach to form bubbles. This is presumably the
result of an instability originating in the far-field. Due to
buoyancy these bubbles continue to rise and float to infin-
ity. Bubble formation becomes more and more vigorous as
the Grashof number is increased.
Acknowledgements

Financial support for this research was provided by the
Natural Sciences and Engineering Research Council of
Canada. Discussions with Francis Poulin of UW are grate-
fully acknowledged.
Appendix A. Asymptotic solution

In solving the steady-state problem the far-field condi-
tions w; f;/! 0 as n!1 are imposed. Computationally,
the outer boundary n1 is used to approximate infinity. As a
compromise between computational efficiency and mathe-
matical correctness it is desirable to derive more appropri-
ate conditions that can be applied along the boundary n1.
One approach in obtaining these far-field conditions is to
make use of the well-known similarity solution from a line
heat source, since at large distances the cylinder will appear
as a line. While this approach seems promising there are
some serious drawbacks. For example, the similarity solu-
tion is based on the boundary-layer equations and for small
Grashof numbers as considered here, these equations do
not apply. Further, as pointed out by Suriano and Yang
[2], the vertical velocity predicted by the similarity solution
increases without bound with distance from the source and
this behaviour is clearly not physical. For these reasons a
different approach was adopted.

We begin by arguing that at large distances the flow will
eventually become symmetrical and the cylinder can be
viewed as circular. Then, the working equations become

o
2w

on2
þ o

2w

oh2
¼ e2nf; ðA1Þ

o
2f

on2
þ o

2f

oh2
¼ ow

on
of
oh
� ow

oh
of
on
þ Gren sin h

o/
on
þ cos h

o/
oh

� �
;

ðA2Þ
o2/

on2
þ o2/

oh2
¼ Pr

ow
on

o/
oh
� ow

oh
o/
on

� �
: ðA3Þ

Here, the conformal mapping is given by xþ iy ¼ enþih. In
addition, the geometry has been configured so that the
x-axis points in the vertical direction so as to be consistent
with common convention used in previous investigations
and also for convenience in imposing symmetry.

Next, we set w ¼ w� þ ŵ where w� represents the correc-
tion to the irrotational solution, ŵ, which is obtained by
solving

o2ŵ

on2
þ o2ŵ

oh2
¼ 0: ðA4Þ

The symmetrical solution to (A4) satisifying ŵ! 0 as
n!1 is given by

ŵðn; hÞ ¼
X1
n¼1

ane�nn sinðnhÞ:
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Retaining the leading-order term, which we assume corre-
sponds to n ¼ 1, we then set

w ¼ w� þ a1e�n sin h;

where a1 is an arbitrary constant. Using this formulation
the linearized heat equation, which will be valid at large
distances, then becomes

o2/

on2
þ o2/

oh2
þ a1Pre�n cos h

o/
on
þ sin h

o/
oh

� �
¼ 0: ðA5Þ

To solve Eq. (A5) we introduce v ¼ e�a1Pre�n cos h=2/ which
satisfies

o2v

on2
þ o2v

oh2
� a2

1Pr2

4
e�2nv ¼ 0: ðA6Þ

The solution obeying v! 0 as n!1 is

vðn; hÞ ¼
X1
n¼1

½bn sinðnhÞ þ cn cosðnhÞ�Inða1Pre�n=2Þ;

where In denotes the modified Bessel function of order n of
the first kind. For large n, In is well approximated by the
leading-order term in its asymptotic expansion given by

In �
an

1Prn

22nn!
e�nn as n!1:

Taking the symmetrical solution of order m to be the first
non-zero term in the series yields the following asymptotic
solution for /:

/ � ea1Pre�n cos h=2fa2e�mn cosðmhÞg;

where a2 is an unknown constant. We point out that deter-
mining the order m is part of the solution procedure.

To an excellent approximation, the factor

ea1Pre�n cos h=2 	 1 as n!1:

However, it is worth emphasizing the importance of this
factor. It accounts for the variation of / in the plume re-
gion concentrated around h ¼ 0. As expected, / will decay
more slowly in this region. For moderately large n we see
that this variation is not significant. This marks a funda-
mental difference in the form of the solution when com-
pared to the classical line source solution which emerges
from the boundary-layer equations. It is also worth men-
tioning that when a background flow is present, such as
in mixed convection problems, the above factor will display
a more well defined plume region.

Next, we proceed to the vorticity equation. At large dis-
tances it is expected that a balance between diffusion and
buoyancy will be reached and retaining the dominant terms
in the vorticity equation gives

o2f

on2
þ o2f

oh2
¼ �ma2Gre�ðm�1Þn sin½ðmþ 1Þh�: ðA7Þ

The solution to (A7) satisfying f! 0 as n!1 is easily
found to be
f ¼ d1e�ðmþ1Þn þ a2Gr
4

e�ðm�1Þn
� �

sin½ðmþ 1Þh�;

where d1 is an arbitrary constant.
Lastly, we return to the streamfunction and solve for w�

using the above result for the vorticity. This brings us to
the equation

o2w�

on2
þ o2w�

oh2
¼ ðd1e�ðm�1Þn þ a2Gr

4
e�ðm�3ÞnÞ sin½ðmþ 1Þh�:

ðA8Þ

It is immediately clear from (A8) that in order for w� ! 0
as n!1 we require that m > 3. Thus, setting m ¼ 4 as the
leading-order term we arrive at the following solution for
w�:

w� ¼ � d1

16
e�3n þ d2e�5n � a2Gr

96
e�n

� �
sinð5hÞ;

where d2 is another arbitrary constant. It is interesting to
observe that the dominant term in this solution is Oðe�nÞ
just like the irrotational solution. Thus, the rotational com-
ponent of the vorticity contributes little in the far-field.
Summarizing, we have found that

w � a1e�n sin h; f � a2Gr
4

e�3n sinð5hÞ;

/ � a2e�4n cosð4hÞ as n!1:

From the above, it is clear that neglecting the advective
term in the vorticity equation is justified since it is
Oðe�4nÞ while the buoyancy term is Oðe�3nÞ.

To deal with the unknown constants a1 and a2, several
approaches can be taken. Ideally, they should be related
to macroscopic quantities such as the drag/ lift coefficients
and Nu, although this may be complicated to do. Another
approach would be to determine them numerically by
appealing to the integral conditions discussed earlier. By
splitting the integrals into two parts, one from 0 6 n 6
n1 and the other from n1 6 n <1, we can compute the
first part numerically and the second part analytically using
the asymptotic solution. The constants can then be deter-
mined numerically as part of the iterative procedure. Alter-
natively, the above asymptotic conditions can be converted
to the following gradient conditions:

ow
on
! �w;

of
on
! �3f;

o/
on
! �4/ as n!1;

which do not involve the unknown constants. These condi-
tions are consistent with the asymptotic solutions and are
more convenient to implement in a numerical solution
procedure.
Appendix B. Derivation of small time solution

The leading-order terms w�; f�;/� are expected to be dic-
tated by the conduction equations
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o2w�
on2
¼ M2

0f�;

of�
ot
¼ 1

M2
0

o2f�
on2
þ GrA0

o/�
on

� �
;

o/�
ot
¼ 1

M2
0Pr

o2/�
on2

;

where

M2
0ðhÞ ¼

1

2
½coshð2n0Þ � cosð2hÞ�;

A0ðhÞ ¼ sinh n0 cos g cos h� cosh n0 sin g sin h:

Similarity solutions for /�; f� with Pr ¼ 1 satisfying the
boundary conditions are found to be

/� ¼ erfcðM0zÞ;

f� ¼
ffiffi
t
p

2

1ffiffiffi
p
p

M0

e�M2
0
z2 � zerfcðM0zÞ

� �
HðhÞ

þ GrA0

ffiffi
t
p 1ffiffiffi

p
p

M0

e�M2
0
z2 � 2zerfcðM0zÞ

� �
;

where

erfcðxÞ ¼ 1� 2ffiffiffi
p
p

Z x

0

e�u2

du; z ¼ nffiffiffiffi
4t
p ;

and HðhÞ is an arbitrary function.
The similarity solution suggests that we consider rescal-

ing the coordinate n as n ¼
ffiffiffiffi
4t
p

z. The transformed equa-
tions are given by Eqs. (7)–(9). The similarity solution
also suggests that for small t we can expand the flow vari-
ables in the following series:

w ¼ w0 þ
ffiffi
t
p

w1 þ tw2 þ 
 
 
 ;
f ¼ f0 þ

ffiffi
t
p

f1 þ tf2 þ 
 
 
 ;
/ ¼ /0 þ

ffiffi
t
p

/1 þ t/2 þ 
 
 


It follows that the similarity solutions will emerge naturally
from this expansion procedure. To proceed we next expand
quantities such as e�2n

ffi
t
p

z;A;B and M2 in the series

e�2n
ffi
t
p

z ¼ 1� 2n
ffiffi
t
p

zþ 2n2tz2 � 
 
 
 ;
Aðz; h; tÞ ¼ A0ðhÞ þ 2

ffiffi
t
p

zA1ðhÞ þ 2tz2A0ðhÞ þ 
 
 
 ;
Bðz; h; tÞ ¼ B0ðhÞ þ 2

ffiffi
t
p

zB1ðhÞ þ 2tz2B0ðhÞ þ 
 
 
 ;
M2ðz; h; tÞ ¼ M2

0ðhÞ þ 2 sinhð2n0Þ
ffiffi
t
p

zþ 4 coshð2n0Þtz2 þ 
 
 
 ;

where

A1ðhÞ ¼ cosh n0 cos g cos h� sinh n0 sin g sin h;

B0ðhÞ ¼ cosh n0 cos g sin hþ sinh n0 sin g cos h;

B1ðhÞ ¼ sinh n0 cos g sin hþ cosh n0 sin g cos h:

Substituting these expansions into Eqs. (7)–(9) and
equating like powers of t leads to a hierarchy of problems
at various levels of approximation. We have explicitly
determined the non-zero terms f1;/0;/1 and have deduced
that w0 ¼ w1 ¼ w2 ¼ f0 ¼ 0.
We illustrate the procedure for the Oð
ffiffi
t
p
Þ problem. The

terms w1; f1;/1 satisfy the equations

o2w1

oz2
¼ 0;

1

M2
0

o
2f1

oz2
þ 2z

of1

oz
� 2f1 ¼ �

2GrA0

M2
0

o/0

oz
;

1

PrM 2
0

o2/1

oz2
þ 2z

o/1

oz
� 2/1 ¼ �

4 sinhð2n0Þz2

M2
0

o/0

oz
;

where

/0ðz; hÞ ¼ erfcð
ffiffiffiffiffi
Pr
p

M0zÞ:
The solution for w1 satisfying w1 ¼ ow1=oz ¼ 0 on z ¼ 0

is easily found to be w1ðz; hÞ ¼ 0. By variation of parame-
ters the solution for /1 satisfying /1 ¼ 0 on z ¼ 0 and
/1 ! 0 as z!1 is given by

/1ðz;hÞ ¼ �
sinhð2n0Þzffiffiffi

p
p

M2
0

ffiffiffiffiffi
Pr
p

M0ze�PrM2
0
z2 þ

ffiffiffi
p
p

2
erfcð

ffiffiffiffiffi
Pr
p

M0zÞ
� �

:

To solve for f1 we set Pr ¼ 1 so as to simplify the alge-
bra, and impose the boundary condition f1 ! 0 as z!1.
Since the surface vorticity is not known, we also enforce the
integral conditions which have been expanded to yieldZ 1

0

Z 2p

0

M2
0f1 sinðnhÞdhdz ¼ 0; n ¼ 1; 2; . . . ;

Z 1

0

Z 2p

0

M2
0f1 cosðnhÞdhdz ¼ 0; n ¼ 0; 1; . . .

The general solution for f1 is

f1ðz; hÞ ¼ CðhÞM0zþ DðhÞ½e�M2
0
z2 þ

ffiffiffi
p
p

M0zerfðM0zÞ�

� GrA0ffiffiffi
p
p

M0

e�M2
0
z2

:

Since f1 ! 0 as z!1, it follows that CðhÞ ¼ �
ffiffiffi
p
p

DðhÞ.
From the integral conditions we can deduce that

DðhÞ ¼ 2GrA0ffiffiffi
p
p

M0

:

Thus, the solution for f1 becomes

f1ðz; hÞ ¼
GrA0ffiffiffi
p
p

M0

e�M2
0
z2 � 2GrA0zerfcðM0zÞ:

These non-zero terms are sufficient to yield an accurate
solution for small t and can be used to furnish an initial
condition for small times beyond t ¼ 0. This expansion
procedure can be continued. More terms have been found
and are reported in [31]. Since the analytical solutions pre-
sented here have only been found for Pr ¼ 1, the more gen-
eral case with Pr 6¼ 1 can be found by numerically solving
the corresponding equations.
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